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EODY CURRENT CALCULATIONS IN THIN CONDUCTING
PLATES USING A FINITE ELEMENT-STREAM FUNCTION CODE*

K-Y. Yuan, J.F. Abel, F.C. Moon

Abstract - A stream function or vector potential for dimensional space, and constant across the sheet thick-

th-e-currnt density vector is used to develop a finite ness. Application of theTBiot-Savart law and the di-

element code for calculating induced currents in thin vergence theorem yields Bj for the midplane of the

conducting plates. While two-dimensional, the code in- plate (z-O):

cludes self field effects for harmonic fields for skin

depths on the order of the plate thickness and larger.

The solution of the resulting integro-differential D (__yo)_______x',y') darea'L_

equation, using a Galerkin method, leads to a complex, a (xyo)-x (.y) d2ae/2

nonsymmetric, fully populated global matrix. In area C(x - x') + (Y-y')

addition to the current density, the code also calcu-

lates induced temperatures due to Joule heating and the
magnetic forces on the plate. The results are compared • has been set to zero on the boundary of the

to infrared measurements of induced currents in rec- plate in the above derivation. When the plate is

tangular plates. Extension of the code to transient multiply connected, different constant values of p will

problems using both fast Fourier transform and direct be assigned on each interior boundary. These bcundary

integration methods is in progress. conditions, together with the known B 0 and (3), are
z

INTRODUCTION then used in (2) for the determination of the stream

function ip.

The goal of ongoing research at Cornell is to

develop numerical methods for the coupled analysis of Formulation

forces, currents, and stresses in thin elastic
structures exposed to time-dependent magnetic fields. For steady state, harmonic current in a flat plate

In particular the project is directed toward time de- plate, (2) may be nondimensionalized into the following

pendent magnetic forces and motions of elastic plates form

and shells. Both applied mathematical analysis and
finite element numerical computer techniques are being 2 . iZ, + iR f(n)
used. Verification of the newly developed computer

codes is carried out by direct comparison of the calcu- area [(X-C)

lated results with experimental data and is carried out (4)

at each stage of the development. The experiments 12iRe(x~y)
employ a new infrared scanning technique to visualize

the induced eddy current patterns in the structures.
in which the coordinates are nondimensionalized with

Most techniques for calculating stresses due to h ,h8 iwt

electromagnetic fields require a three-dimensional respect to half the thickness (); -u)e

treatment even if the structure is one or two- 0o (-)ee ; the magnetic Reynolds number is

dimensional such as a beam, plate, or shell [I,2. In z 
2

this research a stream function for the induced current R -wuh1/Sw which is related to skin depth f through

in the conducting structure has been used which reduces R 1 2 ) ; and B is the reference magnetic field.

the magnetics problem to a two-dimensional one and

allows one to use conformable finite element meshes for The finite element Galerkin method is used to

the magnetic and elastic deformation fields, solve (4). * is approximated globally and locally by

Flat olate. The derivation for the case of a flat G E 6
plate has n given by Moon E3]. The details are not 1" M k Ik " k 6k (E)

repeated here; only the essential relationships are k-. k-I

recapitul ated.
in which G is the total number of nodal points, E

If the mid-plane of the plate is chosen as the xy denotes the Eth element, Mk are the quadratic global

plane, one obtains interpolation'-unctions generated from the local ele-

-7 x () ment shape functions Nx . Six-node triangular elements

are used here. The local element shape functions are

and all quadratic in this case. The element algebraic

72 -h-2 (Bo+ 3 1(2) 
equations are

6 • 6 c E(6

For the determin the current stream Z K'k 'k + Z P, + i : k Q k iR (6)

function ý is assumed to be defined throughout three- k-i k- k-

'Researcn sponsored by the Office of Naval Research In which

under Grant 4o. 4O0014-7g-C-0224.
The authors are currently with the University of c 6 " E 9i , AE (7a)

'Wisconsin, Madison, WI 53706 (Yuan), and Cornell Uni- Kik i1 A i

versity, Ithaca, NY 14853 (Abel, 'oon), respectively. A



P! - 2i•r ME ME dAE (7b) Output

Values of the stream function, eddy current,
temperature induced in-a half cycle of the current, and
time-averaged magnetic pressure are produced as output.

Qjk " -R ff Mk(Cn) QJ (in)d~dn (7c) The stream function is calculated at the nodes of the

area finite element mesh. Current, temperature, and
pressure are evaluated at the centroid of each element.

RE EThe stream function and current are calculated in com-

R k -2Y!R f NME dAE (7d) plex form. The modulus and phase angle of the current

AE are evaluated in the interest of spectral analysis for

the calculation of transient currents.

The weighting function 2 is given by Examples

- Two problems analyzed by EDDY2 are shown below.
N (x,y) Figure 1 shows the stream function contours for a 4 to

, J ( -/ dxdy . rectangular plate excited by a harmonic uniform field
A AE [n+with magnetic Reynolds number R - 0.0012. Figures 2

and 2 give the stream function contours and isotherms
for a notched plate subjected to a harmonic uniform

Because of the numerical difficulty associated with the field with R - 0.001. Only half of the plate is shown
sharp variation of the Kernel fundtion in (8), the in both problems because of symmetry. In the analysis,
weighting function is calculated analytically within however, the whole plates are analyzed without taking
the element and numerically outside the element. (7c) advantage of the symmetry conditions.
is then integrated entirely by numerical quadrature.

E The CPU time is 145 seconds with 32 elements in
Since Nj is quadratic, six basic integrations with the first problem using the IBM 370-168 computer. Most

numerators 1, x, y, x2 , xy, and y 2 in (8) need to be of the time is used in evaluating the nonlocal inte-

performed. To simplify the integration, each element gration terms in (6). The computational time can obvi-

is first mapped onto a standard triangle, which is ously be reduced by using the symmetry conditions and

independent of the coordinates of the nodes of the ele- by optimizing the program. Also, the quadratic rec-

ment. The integrations are then performed. The ex- tangular element with it much simpler experssions for

pressions obtained are then used for the calculations the nonlocal integration terms will substantially

of (8) for all the elements. reduce the CPU time.

The resulting global matrix is complex, fully
populated, and nonsymmetric for general nonuniform 5

CAPABILITIES OF THE PROGRAM EDOY2 10

A fortran program EDOY2 has been developed based
on the formulation of (5)-(8). It calculates the local
and nonlocal solutions of stream function, eddy cur-
rent, temperature, and pressure. As of this writing,
the image solution and two-dimensional graphic output
capabilities remain to be implemented. Uniform mag-
netic field and fields due to any number of magnetic
dipoles can be handled. Magnetic fields generated from
some types of coils of interest will be added.

Input 240 h

The geometry of the plate and the description of
the external magnetic field are the two basic forms of
data needed by program EDDY2. The total numbers of
nodal points, load cases, and elements need to be
specified. Coordinate and boundary condition must be
given for each input node. Intermediate nodes may be I

generated for any groups of nodal points that are uni-
formly soaced. Element infornmaiton may also be gener-
ated. Although only six-node triangles are included in
the Present version of EDDY2, the program has been
structured so that other types of elements may be
added. Element group information and the master card
'or each element grouo need, therefore, to be inputed _ I_oo J- .. ..

phe Program allows for different orders of nunerl- 120h
cal Integrations. Six- and seven-point formula are now

provided. The order may be specified on the master Fi2, 1 Stream function contours for

el~ement group card. a long rectangular ;late ex-
cited by a harmonic uniforr
field £ ThJOOI).



REFERENCES

[1] K. Mlya, S. An, Y. Ando, M. Ohta, Y. Suzuki
"Application of Finite Element Method to Electro-
Magneto-Mechanical Dynamics of Superconducting
Magnet Coil and Vacuum Vessel," Proc. 6th Sy!mp. of
Engineering Problems of Fusion Research, No. Ol9t)
Publ. IEEE. NY 1976, pp. 927-934.

[23 E. B. Becker, and R. D. Pillsbury, "Finite Element
Analysis of Coupled Electric, Magnetic, and
Dynamic Problems," Formulations and Computational
Algorithms in Finite Element analysis, K. J. Bathe
et al., Eds., MIT Press, 1977, pp. 1059-1083.

[33 F. C. Moon, "Problems in Magneto-Solid Mechanics,"
Mechanics Today, S. Nemat-Nasser, Ed., American

4 Academy OT mechanics, Nov. 1977.

~u3

u2

Ffi. Z Strearm function contours
for a notched plate ex-
cited by a harmonic uni-
form field (lotchwidth

2h, P. 0.a01).

0.5

1.. 
2.5

2.5 1.5

0.5

0.5

1.5

27.5

0.30

F13. 3 Isother.ls for a ;lotched
Plate Excited by a lHar-
nonic Uniform. Field
('!otchwidth a Zh,
P 3.031).



Report 7, Part 2

A BOUNDARY INTEGRAL METHOD FOR EDDY CURRENT FLOW

AROUND CRACKS IN THIN PLATES

M.A. Morjaria, S. Mukherjee, and F.C. Moon

presented at COMPUMAG-3, the

Third International Conference on the Computation of Magnetic Fields

Chicago

September 1981

to be published in

IEEE Transactions on Magnetics

March 1982



Unclassified
SCCUNJITY CtASSI1ICATION OF ?TIS PAGE (*l?,n Data Entered)

SREPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

. RIEPORT NUMBER " P2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

I7, Part 2 ______________

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A BOUNDARY INTEGRAL METHOD FOR EDDY CURRENT Topical Report

FLOW AROUND CRACKS IN THIN PLATES August 1981-August 1981
6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(a) a. CONTRACT OR GRANT NUMBER(a)

M.A. Morjaria, S. Mukherjee and F.C. Moon ONR Contract Number
N00014-79-C-0224

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Departments of Structural Engineering and Theo- AREA & WORK UNIT NUMBERS

retical & Applied Mechanics, Cornell University, NR 064-621
Ithaca, NY 14853

II. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE

Director, Structural Mechanics Program, Material September 1981
Sciences Division, Office of Naval Research, 13. NUMBEROF PAGES

Arlington, VA 22217 6
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thle report)

Unclassi fied

15. OECLASSIFICATJONiDOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

This document has been approved for public release and sale; distribution
unl imi ted.

17. DISTRIBUTION STATEMENT (of the ebstract entered In Block 20. It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide iIt neceseary and identify by block number)

Boundary element method, Eddy currents, Nondestructive testing,
Numerical methods, Plates

S'20. ABSTRACT (Continue ot revere. side It necessary and Identify by block number)

"--.> A boundary element method which employs a Green's function for a crack
has been developed to calculate the induced eddy current flow around
cracks in thin conducting plates. The theoretical equations employ a
stream function for the current density vector and is equivalent to the
electric field vector potential method. A low frequency or large skin
depth approximation leads to a Poisson equation for steady harmonic
inductor fields. Induced currents around a crack in a square plate due_• •

DD , 1473 ?, EDITION OF I NOV65 IS OBSOLETE Unclassified
$IN 0102- LF. 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (W"an Dare Entered)



Unclassified
SMUlURT' CLASSIICATIOM OF THIS PAGI (Wwn Dbeta EnAer4a0

20. Abstract (continued)

-�< to a uniform inductor field for various crack positions and sites have
been calculated" in this paper. '

'-ýThe effect of the relative position and length of the crack, with respect

to the plate width, on the eddy current density near the tips of the crack

is given special attention. These results may be useful to simulate eddy

current flow detection phenomena.

S/N 0102- LF- 014-660' Unclassified
SECURITY CLASSIFICATION OF THIS PAGV/i"afen Data Enter,.d)



A BOUVDARY IET"CRAL METHOD FOR EDDY CURRENT FLOW AROUND CRACKS IN THIN PLATES

M.A. Morjaria, S. Mukherjee and F.C. Moon

Department of Theoretical and Applied 11echanics

Cornell University, Ithaca, New York

ABSTRACT

A boundary element method which employs a Green's function for a crack has been developed to calculate the
induced eddy current flow around cracks in thin conducting plates. The theoretical equations employ a stream
function for the current density vector and is equivalent to the electric field vector potential method. A low
frequency or large skin depth approximation leads to a Poisson equation for steady harmonic inductor fields.
Induced currents around a crack in a square plate due to a uniform inductor field for various crack positions

and sites have been calculated in this paper.

The effect of the relative position and length of the crack, with respect to the plate width, on the eddy
current density near the tips of the crack is given special attention. These results may be useful to simulate

eddy c'irrent flow detection phenomena.

INTRODUCTION

The boundary element method (BEH) (also called density at crack tips of thin plates. This technique
the boundary integral equation method) has emerged as can handle any arbitrary shape of the plate and gener-
an important computational technique for electrodynamic al magnetic fields.

problems. 7u et al (I1 and Ancelle et al [21 have ad- In this paper we discuss application of the BEM

dressed magnecostatic problems by the BEM while Trow- to eddy current flow in a cracked square plate due to

bridge (31 has considered problems by the magnetic po- an uni.ort Inductor field applied normal tc the ulate.

tential method. Very recently, Salon and Schneider A number of crack sizes to plate size configurations

[(4 have solved problems of eddy current flow in long has been considered. Also, effect of the relative
prismatic conductors by the BEM based on the electric position of a crack tip to the plate edge on the in-

potential approach. duced eddy current distribution has been investigated.

In this paper, we describe a powerful boundary

element technique for calculating induced eddy current GOVERNING EQUATIONS

flows in conducting plates with through cracks using A thin plate with a cracx in it is shown in Fig.
the electric potential approach. The BEM has the im- Ati lt ihacaki ti hw nFg

portent advantage that only the boundary of a body 1. The plate is made of a conducting material of
porantadvntae tat nlytheboudar ofa bdyconductivity o. The plate boundary can be arbitrary

(rather than the entire domain) needs to be discretised anduits t k (ir is bou Therthin b ine
and its thickness (uniform) is h. The thin line

-n a numerical solution procedure. crack is of length Za and can have arbitrary ori-

There have been some attempts to model eddy cur- entation relative to the boundary of the plate. The

rent flow around annular cracks in rods and in plates coordinate system for the problem is also shown in
by replacing cracks by Slots (see for example Ref. Fig. i. The origin of coordinates lies at the center
(5). However, we have shown that the induced current of the crack and at the midsurface of the plate.

in the vicinity of a crack leads to a singularity of An external, oscillatory magnet.•c field, •o
current density at the crack tips (6,71. This highAnetraocltrymgt. fld ,
concentradeonsi atlows the rc tse (6,71. c ntsthigh is applied which induces a current density J in the

concentration allows one to use eddy current testing plate. It is assumed that the current density is

devices such as active and passive search coils to
dacet te pesene o crcks.It lsoresuts n~a uniform across the plate thickness and that the skin
dedepth (whicheisninverselycproportionalrtouthe square

temperature hot spot which can be detected by infrared

root oL the frequency) is large compared to the platescanning (6,8]. The boundary element technique intro-
thickness.

duced by :he authors (6,71 and described here allows

)ne to model exactly the singular nature of current



A scream function (or electric potential) formu- !_ nd. (7)

lation is used in this problem. The stream function, 1C1

t(xl,), is defined as These boundary conditions, together with the

field equation (3), constitute a well posed oroblem.
J = 7'(ýpk) = -k x t, 1

BOUNDARY ELEM{ENT FOLMULAT ION
This equation guarantees the conservation of charge

equation 7.J - 0 for charge free regions.- Integral equations

Using Ohm's law the governing differential equa- An integral equation formulation for Poisson's

tion for the stream function is obtained as (6,7] equation (3) can be written as (Fig. i) (6,7]

7 2 (so3+B3) (2).3. 3 3 2-.-(p) = K(o,0)G(Q)ds. + )\K(vq)f(q)dA. (8)

In the above, 13 is the self magnetic field3 This is a single laver potential formulacion
due to the current J. It has been shown in ref.
(9] where G, a source strength function on the outside

with the skin depth much greater than the thickness boundary, must be determined from the boundary condi-

o3 can be neglected relative to the tion on it (equation 9). The points D (or P) and

ote a for Qa sinusoidal aplaied fed ,e
applied field 3 This assumption simplifies the q (or Q) are source and field points, respectively,

problem, and, with 33 - 33 e (with i. - 1-7 with capital letters denoting points on the boundary
f te of the body and lower case letters denoting pointsa n d w t h e f r e q u e n c y ) , t h e s p a t i a l p a r t o f ý s a ti s - i s d h o v h r a o h o v B i e o e

fies a two-dimensional nonhomogeneous Poisucn's inside the body. The area of the body I is denoted

equation by A.

it has been shown (6] that 41 from equation (8)
3 ( with the following kernel satisfies the boundary con-

The boundary condition requires that the current ditions (5) and (7) implicitly.
must be tangential to the plate boundary. Thus • K(p,q) - Re(•(z,iZo1 (9)

is required to be constant on the boundaries 3C1

and 3C2 . On one boundary, the value of V is set -0 n(l-r/) - Zn(l-r1 ) (10)

to zero, while on the other boundary , - C and C z 0 t 42Y± -

is obtained from the assumption that the net flux flow- where r2 - 2 * 
1

ing through the crack boundary is zero. This leads to ±

the condition z 2 t /C4

d J.tds - 0 (4) Re denotes the real part of the complex argument,

where t is an unit tangent to aC1  and s is the z and z° are the source and field Doint coordinates,

distance measured along a boundary in the anticlock- respectively, in complex notation and a suneroosed
bar denotes, as usual, the complex conjugate of a corn-wise sense. This formulation assumes that no current

flows across the crack or crack tip and leads to a 0lax quantity.

singularity of the J field at a crack tip. This is The remaining boundary condition (6) on the out-

analogous to the stress singularity in fracture me- side surface is satisfied by using a differentiated

chanics. It is possible that some leakage of current version of (8) and taking the limit as p inside B

occurs across a crack tip and thus relieves the singu- approaches a point P on X 2. Defining

larity in actual conductors. Possible leakage of a1 " Im(a"-.-
2 ) , H, - -Re(1ý.- .) (11)

current is not considered in this paper. (It is noted 3 -z

here that infrared scans of eddy current flow around the boundary condition (6) becomes

cracks do indeed show a large increase in temperature 0 = . ii(PQ)ni(P)G(Q)dsQ + IAH.(P,q)n,(P)f(q)dA (12)

at the crack tips, indicating high current density

at the crack tips (61.) where n! are the components of the unit outward norm-

In summary, the boundary conditions on p, used al to )C2 at some locally smooth point on it.
The current, J, at a point inside the body is

in this formulation, are
obtained from equations (1) and (8).

' 0 on the crack boundary XCI (5)

- 0 on the outside boundary i C2 X 6)
'Is2



Discretization of equations and solution strategy Vil .a andh 2k d

14wio -. 3 and the skin depth

The outer boundary of the body, DC2 , is divided i43 R

into N2 straight boundary elements using Nb (N4 2 - Jau0

N.,) boundary nodes and the interior of the body, A, - Jou-

is divided into nL triangular internal elements.

A discretized version of equacion (12) is For the results in this paner a - 2. A typical

mesh for the results for example shown in Fig. 2d
0 R(PMQ)niP
.2 i(Pi)G(Q14 sQ has 48 boundary segments uniformly distributed along

+ fni Hi(P,..,q)ni(P, )f(q)dA (the upper half (due to symmetry) of the boundary
-i i q of the plate. In order to evaluate the known area

where is the point P where it coincides with integral in Equation 13, the internal area quadra-

a node M at a center of a boundary segment on C2, ture was used. It took about 300 c.p.u. sets on

and as and MAi are boundary and internal elements TAM 370/168 to obtain the results in Fig. 2d.

respectively. The equation (15) is identical to one relating

A simple numerical scheme is used in which the to the torsion of shafts. The BE( was verified by

source strengths G are assumed to be piecewise uni- comparing the numerical results for the solution of

form on each boundary segment with their values to be (15) in a square plate without a crack to known

determined at the nodes which lie at the centers of analytical results for the torsion of a shaft. The

each segment. Substitution of the piecewise uniform BEM method has also been checked against a finite

source strengths into equation (13) and carrying out element technique developed for eddy current prob-

of the necessary integrations, analytically and num- lems (101.

erically, leads to an algebraic system of the type Eddy current stream lines (rp lines) are shown

(0) - (AI(GI + (d} (14) in Figs. 2 and 3 for a square plate with a crack in

hit. Fig. 2 (a) - (c) shows how the stream linesThe coefficients of the matrix [Al contain

are affected by varying the size of the plate whileboundary integrals of the kernel. The vector (d}

contains contributions from the area integrals a keeping the crack size same. Due to symmetry only

the upper half of the plate is shown in Fig. 2. Fig.the vector (Gl the unknown source strengths at the
2 (d) shovs the effect of moving the crack towards

boundary nodes. The dimension of (GI depends only
one of the plate edges. Fig. 3 shows a close up ofon the number of boundary elements on •2and the
the stream lines near right crack tip for Fig. 2 (c).internal discrecizaclon is necessary, only for the
The crowding of stream lines near crack 1•ps leads

evaluation of integrals with known integrands. o re roding of st reaor c ack induled

The solution strategy is as follows. The matrix

currents in this region. The local temperature is
LA] and vector fdl in equation (14) are first eval-

proportional to the square of the current density
utned by using the appropriate expressions for the (J.3). Figure 4 shows calculated temperature scans

kernels and the prescribed function f inceqr ti along a line slightly above the crack (;2 - .0125)

(3). Eqluaion (14) is solvused for the vctor ve- for the results shown in Fig. 2. From Figs. 4 (a) -

Thisovalue of equation(8) is nowbuin t vad etihed vr(c) one can conclude that as the crack size increases
sion of equation (8) to obtain the values of the

relative to the plate size the hot spots at crackscream function Li at any point p. Finally, the
tips are more significant comnared to those at the

current vector at any point is obtained from equations edgs The effect of moving the ar the

analogousedges. 
The effect of moving the crack near he plate

edge gives rise to significant hot spots as shown

in Fig. 4 (.d, and (c). This becomes more apparent
ME•RICAL RESULTS

when we look at the 'Eddy Current Intensity Factor'

defined below. It has been shown (6,7] that theIn the numerical conoutations, B3 in Eq. (13)
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.- - I , x x/a (15) - = a
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